
Cypress Selenium

Test Execution 

Speed

Cypress operates within the web browser, 

enhancing test speed by providing clear visibility 

into the application under test. Developers 

utilize Spies, Stubs, and Clocks to verify and 

control server responses, functions, or timers.



Cypress has built-in waiting and retry 

mechanisms for faster test execution.
  

Cypress offers parallelization with automatic 

load balancing for all Cypress Cloud plans.

Selenium uses an interface to interact with web 

browsers, and this delay in communication can 

significantly slow down actions and 

validations.
  

Selenium relies on explicit waits, potentially 

causing delays and impacting test execution 

speed.
 

Selenium Grid supports parallel executions, but 

manual user configuration is necessary for 

load balancing.


Explore the exceptional strengths and capabilities of Cypress as opposed to Selenium. Delve 
into crucial features, performance benchmarks, and development efficiencies that make 
Cypress the leading testing framework, and a true out-of-the-box solution for organizations.

Architecture

Comparing Cypress and Selenium: 

A Comprehensive Analysis



Cypress Selenium

Reliability & 
Determinism

Cypress smartly waits for elements, 
automatically retrying commands until the 
element is ready. This minimizes the need for 
explicit waits and mitigates timing-related 
flakiness issues in tests.



Cypress executes within the same run loop as 
your application for maximum reliability.

Selenium often requires the use of explicit waits 
to handle synchronization issues. The reliance 
on explicit waits can make tests more 
susceptible to timing-related issues, and it may 
lead to flakiness if not implemented carefully.



Selenium necessitates setting up a separate 
WebDriver for browser automation. Variations in 
WebDriver versions, browser configurations, and 
network conditions can affect test reliability.

Maintenance Cypress tests boast automatic page reloading 
and test reruns, streamlining debugging and 
ensuring stability. The integrated test runner 
and direct browser interaction further enhance 
test stability, and therefore maintenance.

Selenium tests are often unstable, brittle, and 
prone to breakage due to application or test 
environment changes. This can make 
maintaining the test suite more difficult and 
time-consuming.

Language 
Support

JavaScript-based, which is widely used for web 
development.

Supports multiple languages (Java, C#, Python, 
etc.).

Developer Experience

Cypress Selenium

Set Up and 
Installation

Quick setup, minimal configuration, and no need 
for browser-specific drivers.

Requires complex configuration and setup 
steps.

Video 
Recordings

Cypress features automatic video recording of 
entire test executions, capturing interactions, 
assertions, and all activities by default.

Selenium lacks built-in video recording, and 
external tools or third-party libraries must be 
employed for screen recordings during test 
execution.



Cypress Selenium

Time-travel 

Debugging

Developers can visually step through each 

command in a test and observe the state of the 

application at each step.



With Test Replay in Cypress Cloud, you have 

the added functionality of scrubbing, so you 

can move back and forth through the recorded 

test run in CI and interact with your application 

under test.

Selenium does not provide a built-in time-travel 

debugging feature. Developers typically rely on 

logging, breakpoints, and step-by-step execution 

to identify and troubleshoot issues during test 

execution.

Efficiency in 

Writing Tests

Cypress has native assertion support with 

automatic retries and a dedicated debugging 

experience.



Cypress automates waiting for elements during 

page loads and provides control over network 

requests.



Cypress Studio provides a visual way to 

generate tests within Cypress, by recording 

interactions against the application under test.

Selenium relies on external assertion libraries 

and often requires manual handling of retries.




Selenium relies on explicit waits and has limited 

built-in features for controlling network 

conditions.



Selenium provides Selenium IDE, a test recorder 

with code export capabilities.


Documentation Structured for developers, Cypress 

documentation prioritizes a smooth learning 

curve for JavaScript users. It promotes a 

hands-on, code-centric approach with rich 

examples, tutorials, and best practices.

Extensive documentation may be complex for 

beginners. It often refers users to various tools 

and extensions, potentially overwhelming 

those who prefer a more streamlined and 

integrated approach.

Cross-team 

Adoption

Cypress has broader applicability, allowing your 

entire team to adopt a unified testing 

framework.

Selenium is more specialized, and its intricacy 

may limit familiarity to a select few members 

on your team.

Paid Support White-glove support and strategic guidance 

available through a dedicated Technical 

Account Management team. Available via 

Cyress Cloud.

Unavailable.



Cypress Selenium

Component 

Testing

Benefit from built-in support, live reloading, and 

browser devtools for easy data mocking and 

component state manipulation, eliminating 

complex data management and app setup 

challenges.

Lacks built-in support, necessitating manual 

configuration and script structuring to target 

individual components. Additionally, 

component tests are not executed in a real 

browser environment.

Multi-Browser 

Testing & 

Multi-tab 

Support

Seamlessly test communication between 

multiple tabs or windows with Cypress, using 

Puppeteer's browser API.



Test a single browser at a time locally, and 

multiple browsers in CI by running in parallel 

within Cypress Cloud.

Multi-browser and multi-tab testing available via 

Selenium Grid.

Browser 

Support

Supports all major browsers. Supports all major browsers but requires more 

configurations.

Test Coverage Cypress UI Coverage, a no-configuration tool, 

dynamically maps test coverage across every 

page. It vividly highlights tested interactive 

elements, offering a clear overview of your 

testing progress. Available via Cypress Cloud.

Out-of-the-box solution is unavailable. You 

would need to instrument your source code 

with the chosen code coverage tool, and 

configure it in your build system.

Accessibility 

Reporting

Cypress Accessibility aggregates your Cypress 

test data and automates accessibility checks 

without any additional configuration. Detected 

issues are visually highlighted on your page 

and application for easy identification.

Out-of-the-box solution is unavailable. Must 

manually integrate open-source tools such as 

axe Accessibility Checker to Selenium, and 

would require running and repeating 

accessibility commands for every test case.

Comprehensive Coverage


